
#GLOBALAZURE #AZUREMILANO

P
O

W
ER

ED
 B

Y:

MILANO ON AIR 24 APRILE 2020

#GLOBALAZURE #AZUREMILANO

P
O

W
ER

ED
 B

Y:

Develop and distribute Azure Functions
using K8s and CI/CD

EMANUELE BARTOLESI — MATTEO TUMIATI

@KASUKEN @XTUMIOX

Welcome to Azure Functions

Focus on code, not architecture

Plug and play model to enhance
productivity, based on ready-to-
use connectors

Starting point towards a
microservice oriented architecture

Explain different triggers

Build once, deploy everywhere

Choose your own style
• .NET, Node, Java, Python..

• Continue using your
architecture (i.e. injection,
patterns…)

Integrate easily with other Azure
services

Demo
How to get started with a simple Azure Function

The importance of DevOps

46x Deployment Frequency

7x lower CFR

2,604x Faster MTR

2,555x Faster LTC

Faster time to market

Increased Revenue

Build
&

Test

Continuous
Delivery

Deploy

Operate

Monitor
&

Learn

Plan
&

Track

Develop

The importance of DevOps

Infrastructure as Code (IaC)

Continuous Integration

Automated Testing

Continuous Deployment

Release Management

App Performance Monitoring

Testing & Auto-Scale

Azure DevOps - Branch policies

Are used to protect branches from direct
and unwanted commits

• «Dangerous» commits in the middle of a
release

• Force Pull Requests usage

• Keep high quality standards across
teams/projects

• Better traceability

Support for NodeJS and Azure Functions

Input bindings are passed in via param block.
param($req, $TriggerMetadata)

Write-Verbose "PowerShell HTTP trigger function processed a
request." -Verbose

You can interact with query parameters, the body of the
request, etc.
$prId = $req.Body.Resource.PullRequestId

$status = 200
$body = "PR " + $prId + " processed successfully"

Call az CLI from here…

You associate values to output bindings by calling...
Push-OutputBinding -Name res -Value ([HttpResponseContext]@{

StatusCode = $status
Body = $body

})

Demo
How Azure Functions are into CI/CD processes

Containers

The good parts:
Containers are an abstraction at the app layer

Each container is running as isolated process

Containers take up less space then VMs

There’s less IT infrastructure to manage

Multiple containers can run on the same machine and
share the OS kernel

Containers are DevOps friendly

The reality:
Containers are hard to manage

Containers needs orchestration

Kubernetes

Using Docker, you can build and run
containers, and store and share container
images using an open standard

Kubernetes orchestrates and manages the
distributed and containerized applications
that Docker creates

Kubernetes and Docker work together

Why not?

Getting started

Create dockerfile for existing function
$ func init --docker-only

Install into K8s
$ func kubernetes install --namespace {namespace}

Generate only YAML
$ func kubernetes deploy --name my-function-app --registry
{registry} --dry-run > deploy.yaml

Demo
Bring the function to Kubernetes

Manage scaling

Make sure heapster is installed

Choose the best dashboard
that suits your needs

Set up alerts to avoid
exhausting resources

Scaling

Deploy the Azure Function
$ kubectl apply –f deploy.yaml

Scale manually
$ kubectl scale deployment/my-func --replicas=10

Autoscale
$ kubectl autoscale deployment my-func
--cpu-percent=30
--max=30
--min=1

KEDA

Azure Functions are event-driven by design, while
Kubernetes is reactive

Scaling is based on CPU and memory consumption

KEDA is an event-driven auto-scaler for Kubernetes
Can also scale down to zero instances for HTTP events

~30% of Azure Functions are triggered via HTTP
KEDA doesn’t really manage HTTP events but…

Storage, RabbitMQ and Service Bus Queues, Event Grid,
IoT Hubs, Apache Kafka and more are fully supported!

KEDA - Getting started

No need to rewrite existing Azure Functions!

AKS must be configured properly

Once we’re ready to go…

Create dockerfile for existing function
$ func init --docker-only

Start the deployment with KEDA
$ func kubernetes deploy \

--name {functionName} \
--namespace {namespace} \
--registry {docker-hub-id or registry-server}

Resources

Azure DevOps
https://azure.microsoft.com/it-it/services/devops/

KEDA
https://keda.sh/

https://github.com/kedacore/keda

Some articles
https://www.dopsitalia.com/articoli/DevOps/intro-azure-devops.aspx

https://www.dopsitalia.com/articoli/DevOps/devops-k8s-agent.aspx

Demo
https://github.com/aspitalia/azure-milan-2020/

https://azure.microsoft.com/it-it/services/devops/
https://keda.sh/
https://github.com/kedacore/keda
https://www.dopsitalia.com/articoli/DevOps/intro-azure-devops.aspx
https://www.dopsitalia.com/articoli/DevOps/devops-k8s-agent.aspx
https://github.com/aspitalia/azure-milan-2020/

Thanks!

Matteo Tumiati
Senior DevOps Engineer, iCubed
Technical Advisor, openloop
Microsoft MVP

matteot@icubed.it
@xtumiox

Emanuele Bartolesi
Full Stack Web Developer
Live Coder on Twitch
Microsoft MVP

eba@expertsinside.com
@kasuken

mailto:matteot@icubed.it

