
Matteo Tumiati
Senior DevOps Engineer @icubedsrl @openloopit
Content Manager @aspitalia
Microsoft WinDev/Dev Technologies MVP
matteot@aspitalia.com | @xtumiox

Estensioni personalizzate per 
le pipeline di Azure DevOps e 
GitHub con .NET 5

mailto:matteot@aspitalia.com


Agenda

Intro

Scripts

Task Extensions

.NET 5 ☺



Build flow

The pipeline is created either from 
classic UI or from YAML

The pipeline definition (or process) 
is represented by a list of steps 
executed in sequence

Steps can also be grouped in jobs 
and jobs in stages to create 
context and run multiple 
operations in parallel (if needed)



What are steps?

Steps are a way to execute certain activities
• Restore packages, build a solution, publish artifacts…

Steps can be tasks, scripts, or references to external templates
• Templates only apply when using YAML pipelines

Each step can be referenced in pipelines either from:
• A “predefined” list of built-in tasks in Azure DevOps or

• The Azure DevOps marketplace



What if I need a task that doesn’t exists?

Suppose that:
• I need to deploy on my datacenter

• I must comply to a set of policies when executing steps

• I want to execute a task (for simplicity) but it doesn’t provide all the information I need

Customizations!
• It’s hard to personalize a world-wide multi-tenant tool…

• Azure DevOps has some extensibility points, not only API based…

There are two main options:
• Use PowerShell, Bash, CMD or whatever to script your requirements

• Create an extensions!



Execute custom scripts

[CmdletBinding()]
param (

[Parameter(Mandatory = $True)]
[String]
$Name

)

Write-Host "Hello world, $Name!"

Step 1: write the script in the language you 

prefer based on requirements
In this case it’s Hello-World.ps1 as it will run on Windows

- task: PowerShell@2
displayName: Execute Script
inputs:
filePath: './Hello-World.ps1'
arguments: '-Name Matteo'
failOnStderr: true

- name: Execute Script
run: ./Hello-World.ps1 -Name Matteo 
shell: powershell

Step 2: execute the script in Azure DevOps 

(top) or GitHub (bottom)



Should I use custom scripts?

Pros

• You can write any code you need in 
the way you need to comply to 
requirements (i.e. PowerShell on 
Windows, Bash on Linux)

• Can re-use existing code, if any

• There is plenty of documentation 
available for any command

Cons

• Lack of user interface means that all 
the parameters must be passed in 
input

• Parameters must be validated at 
runtime (no compile-time checking)

• May be hard to get started if you are 
not skilled enough

• Can be tricky if the same script has to 
run against different OS



Custom pipeline task extensions

The best experience you can have OOB for your users

Share the same task with the community on the Azure 
DevOps marketplace

Some issues presented by scripts are solved:
• Immediately validate (partially) input parameters with the UI

• Can use an SDK to get started

• If a script doesn’t run on a certain OS, you get notified when 
adding it in the pipeline with an unsupported agent



A lot of prerequisites…

An organization in Azure DevOps and an account for the marketplace
• Not that obvious, if you plan to use GitHub…

A text editor
• Visual Studio Code, which provides IntelliSense and debugging support is perfect

The latest version of Node.js
• The production environment uses only Node10 or Node6 (by using the "Node" in the 

"execution" object instead of Node10)

TypeScript Compiler 2.2.0 or greater
• Microsoft recommends version 4.0.2 or newer for tasks that use Node10

Cross-platform CLI for Azure DevOps (tfx-cli) to package extensions
• You can install tfx-cli by using by running npm i -g tfx-cli.



Author a task extension – Part 0

|--- README.md    

|--- images

|--- extension-icon.png  

|--- task

|--- tests                                  

|--- vss-extension.json

// brief description on how to use the task

// displayed in the pipeline, marketplace

// where your task scripts are placed

// unit tests folder

// extension's manifest



Author a task extension – Part 1

# Create a directory and package.json file 
npm init

# Add azure-pipelines-task-lib, that should be used to create tasks
npm install azure-pipelines-task-lib --save

# Install and configure typescript
npm install @types/node --save-dev
npm install @types/q --save-dev
npm install typescript@4.0.2 --save-dev
tsc --init

# Configure git
echo node_modules > .gitignore



Author a task extension – Part 2
{

"$schema": "https://raw.githubusercontent.com/Microsoft/azure-pipelines-task-lib/master/tasks.schema.json",
"id": "{{taskguid}}",
"name": "{{taskname}}",
"friendlyName": "{{taskfriendlyname}}",
"description": "{{taskdescription}}",
"category": "Utility",
"author": "{{taskauthor}}",
"version": {

"Major": 0,
"Minor": 1,
"Patch": 0

},
"instanceNameFormat": "Echo $(samplestring)",
"inputs": [

{
"name": "name",
"type": "string",
"label": "The name of the user running the task",
"defaultValue": "World",
"required": true,

}
],
"execution": {

"Node10": {
"target": "index.js"

}
}

}

Create the task.json file 

that describes the build 

(or release) task. 

This is what the build (or 

release) system in Azure 

DevOps uses to render 

configuration options to 

the user and know which 

scripts to execute at 
build/release time



Author a task extension – Part 3

Create an index.ts file. This 
code runs when the task is 
called.

import tl = require('azure-pipelines-task-lib/task');

async function run() {
try {

const inputString: string | undefined = tl.getInput('name', true);
if (inputString == 'bad') {

tl.setResult(tl.TaskResult.Failed, 'Bad input was given');
return;

}
console.log('Hello', inputString);

}
catch (err) {

tl.setResult(tl.TaskResult.Failed, err.message);
}

}

run();



Author a task extension – Test

import * as path from 'path';
import * as assert from 'assert';
import * as ttm from 'azure-pipelines-task-lib/mock-test';

describe('Sample task tests', function () {

before( function() {

});

after(() => {

});

it('should succeed with simple inputs', function(done: Mocha.Done) {
// Add success test here

});

it('it should fail if tool returns 1', function(done: Mocha.Done) {
// Add failure test here

});    
});

npm install mocha --save-dev -g
npm install sync-request --save-dev
npm install @types/mocha --save-dev

Step 1: include all the dependencies 

of your test framework (Mocha)

Step 2: write the test cases in tests/_suite.js

tsc
$env:TASK_TEST_TRACE=1
mocha tests/_suite.js

Step 3: compile and run tests



Author a task extension – Build and run

Enter "tsc" from the 
source folder to 
compile an index.js file 
from index.ts.

Run the same file to 
see the logs that are 
simulating the 
experience of the 
Azure DevOps pipeline

# Compile
tsc

# Prepare input parameter and execute
$env:INPUT_NAME="Matteo"
node index.js

# Logs
##vso[task.debug]agent.workFolder=undefined
##vso[task.debug]loading inputs and endpoints
##vso[task.debug]loading INPUT_NAME
##vso[task.debug]loaded 1
##vso[task.debug]Agent.ProxyUrl=undefined
##vso[task.debug]Agent.CAInfo=undefined
##vso[task.debug]Agent.ClientCert=undefined
##vso[task.debug]Agent.SkipCertValidation=undefined
##vso[task.debug]name=Matteo
Hello Matteo



Author a task extension – Sign

The extension manifest contains all 
the information about the extension. 

Ensure you've created an images 
folder with extension-icon.png. 

More info on the syntax are available 
here: https://docs.microsoft.com/en-
us/azure/devops/extend/develop/ma
nifest?view=azure-devops

{
"manifestVersion": 1,
"id": "build-release-task",
"name": "Fabrikam Build and Release Tools",
"version": "0.0.1",
"publisher": "fabrikam",
"targets": [ { "id": "Microsoft.VisualStudio.Services" } ],    
"description": "Tools for building/releasing with Fabrikam. Includes one build/release task.",
"categories": [ "Azure Pipelines" ],
"icons": {

"default": "images/extension-icon.png"        
},
"files": [ { "path": "task" } ],
"contributions": [

{
"id": "custom-build-release-task",
"type": "ms.vss-distributed-task.task",
"targets": [

"ms.vss-distributed-task.tasks"
],
"properties": {

"name": "buildAndReleaseTask"
}

}
]

}

https://docs.microsoft.com/en-us/azure/devops/extend/develop/manifest?view=azure-devops


Author a task extension - Distribute

All extensions are packaged as VSIX 2.0-compatible files

We can use the tfx-cli that Microsoft provides (works cross-platform) to package 
the extension in a VSIX format

Once the extension is ready, it can be published in the marketplace and then 
added as part of the organization for private testing

tfx extension create --manifest-globs vss-extension.json
tfx extension publish --manifest-globs your-manifest.json --share-with {{organization}}



Should I use task extensions?

Pros

• Good UI and UX for end-user who 
are just getting started and/or want 
a unified experience built into the 
product

• Complete ALM under Azure DevOps 
with pipelines, tests and so on…

• Documentation is being renewed 
and contains references also to the 
UI components

Cons

• Even if we have CLI, it’s a bit hard to 
get started

• You (probably) need to learn a lot of 
new tools and languages

• Doesn’t work on GitHub



What about GitHub?

GitHub and Azure DevOps are both under heavy development in Microsoft and 
are both supported and suggested to get started with

• More info here: ReBuild 2020 Live - Online | conferenza | ASPItalia.com

GitHub has a different extension method that supports:
• JavaScript actions that run plain on the agent and represent the most similar option 

compared to what is available in Azure DevOps

• Dockerized actions that run in a container, slower compared to pure JS actions

• Composite actions that allow you to combine multiple workflow steps within one action

There is no way to convert a task extension into a custom action

https://www.aspitalia.com/eventi/82/ReBuild-2020-Live-Online.aspx


.NET tools to the rescue

A .NET tool is a special NuGet package that contains an entire console 
application written in .NET 

Why a .NET tool?
• Fits perfectly in between the scripts and task extensions

• You can choose your own language that is part of the .NET family

• No UI and no complexity in getting started 

• Tasks can work on any OS given .NET 5 is cross-platform (since .NET Core)

• Takes advantage of CI/CD system for ALM and versioning as it’s a “classic” console app

• Azure DevOps? Yes. GitHub? Yes. What about Jenkins? YES!



How to get started?

On the authoring side:
1. Write a console app

2. Extend it to be a .NET tool

3. Distribute it on NuGet (or similar)

On the consumer side:
1. Use dotnet search or ToolGet to search for packages (optional)

2. Install the tool using dotnet tool install -g {{ package-name }}

3. Invoke the tool using {{ package-name }} like a “classic” script

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-tool-search
https://www.toolget.net/


Demo

Create a .NET Tool and use it 
in Azure DevOps



Use the task

# Install the .NET tool
- script: dotnet tool install --tool-path tools Hello --version 1.0.0
displayName: 'Install tool'
env:

DOTNET_SKIP_FIRST_TIME_EXPERIENCE: true
DOTNET_CLI_TELEMETRY_OPTOUT: true

# When the tool is installed, then we can use it
- pwsh: ./tools/hello-world-aspitalia ${{ parameters.speaker }}
displayName: 'Print hello'

# Install the .NET tool
- name: Install tool
run: dotnet tool install --tool-path tools Hello --version 1.0.0

# When the tool is installed, then we can use it
- name: Print hello
run: ./tools/hello-world-aspitalia $speaker
env:

SPEAKER: "Matteo"

Azure DevOps

GitHub



Scripts Extensions .NET Tools

Works on GitHub Yes
without rewriting

No
requires rewrite

Yes
without rewriting

Has UI interface No Yes No

Flexibility
No

You must choose a language dependent on OS for 

script and tests

No
You must do whatever Azure 

DevOps/GitHub requires

Yes
Any console app based on .NET will 

simply work

Easy to start with
Yes

If you are skilled in writing scripts (Pwsh, Bash…)

No
Even if you are experienced, there are a lot of 

prerequisites

Yes
If you are skilled in .NET

Can reuse existing code Yes Possible, but difficult Yes

Easy to test
No

Depends on the language and on the framework 

(Pester?)

No
Unit tests? Yes. Integration tests? You 

must install the extension. UI tests? No

Yes
Can use any preferred framework (xUnit, 

nUnit…)

Language agnostic
No

There are limits in PowerShell vs. Pwsh Core and so 

on…

No
Must know JS or PowerShell

Yes (99%)
Any console app written in .NET (C#, VB, 

F#...)

Documentation
Yes

Depends on the language

Yes
developer.microsoft.com/en-us/azure-

devops

Yes
docs.microsoft.com 

Recap

https://developer.microsoft.com/en-us/azure-devops
https://docs.microsoft.com/


Resources

Create .NET Tools
• https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools

• https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools-how-to-create

Create Azure DevOps custom tasks/extensions
• https://docs.microsoft.com/en-us/azure/devops/extend/develop/add-build-

task?view=azure-devops#optional-install-and-test-your-extension

Create GitHub custom tasks
• https://docs.github.com/en/free-pro-team@latest/actions/creating-actions

Demo
• https://github.com/aspitalia/net-conf-2020

https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools-how-to-create
https://docs.microsoft.com/en-us/azure/devops/extend/develop/add-build-task?view=azure-devops#optional-install-and-test-your-extension
https://docs.github.com/en/free-pro-team@latest/actions/creating-actions
https://github.com/aspitalia/net-conf-2020


Slide e materiale su
https://aspit.co/netconfit-20

@xtumiox
matteot@aspitalia.com

https://aspit.co/netconfit-20
mailto:matteot@aspitalia.com

