
Matteo Tumiati
Senior DevOps Engineer & Microsoft MVP
matteot@aspitalia.com | @xtumiox

Morgan Pizzini
Senior Consultant @icubedsrl
morgan.pizzini@icubed.it | @morwalpiz

Infrastructure as Code:
ARM vs Terraform

mailto:matteot@aspitalia.com
mailto:morgan.pizzini@icubed.it

Why infrastructure as code?

Follow the same software lifecycle best-practices

Automate (de)provisioning process

Faster and better deployments

Reduce risks

Distribute and integrate with third party
dependencies

Cost analysis and cost reduction

Landscape

Why ARM? The old way

• Manual Process

• Config can change
through time

• Can be deleted

• Not sustainable
when applications
raise

• BORING

Why ARM?

Create as much resources as needed in seconds

Keep configuration consistent through time

Re-apply default configuration when needed

Fits perfectly with CI/CD process

1 JSON and 1 command

SOLID

ARM template

ARM = Azure Resource Manager
• JSON file that allow us to create resources on Azure

Minimum model requirements
• $schema: JSON location for template language

• contentVersion: template language API version

• resources: array of resource to be deployed

ARM template
"resources": [

{

"name": "storageaccount1",

"type": "Microsoft.Storage/storageAccounts",

"apiVersion": "2019-06-01",

"location": "[resourceGroup().location]",

"tags": {

"displayName": "storageaccount1"

},

"kind": "StorageV2",

"sku": {

"name": "Premium_LRS",

"tier": "Premium"

}

}]

• Name

• SKU

• Type

• Resource group

"functions": [{

"namespace": "sample",

"members": {

"concat": {

"parameters": [

{

"name": "name",

"type": "string"

}],

"output": {

"type": "string",

"value": "[concat('hello',toLower(parameters('name')))]"

}}}}],

ARM template

Parameters
Custom value provided during deployment

Variables
Variables used in resource definition

Function
User-defined functions

Outputs
Output of deployment

"parameters": {

"location": {

"type": "string",

"defaultValue": "[resourceGroup().location]",

"metadata": {

"description": "The location resource.“

}}}

"variables": {

"appServicePlanName": "[concat(parameters(‘location'), '-sp')]"

},

Demo

Work with ARM Templates

What is Terraform?

OSS created in 2014 by HashiCorp (same as Vault, Vagrant, Consul and others)

Written in GO

Like ARM templates, you can build, change, version infrastructure through config
files

Why Terraform?

Using providers, you can deploy infrastructure and much more
• Manage Azure DevOps, GitHub or any other service

• Create blog posts on Medium joatmon08/terraform-provider-medium (github.com)

Ensures creation and consistency of resources

Uses an API-agnostic DSL

Multi-cloud/provider support

https://github.com/joatmon08/terraform-provider-medium

Benefits in using Terraform

Reliability and consistency through template validation

Changes are applied incrementally

Infrastructure is stored in a state file (with locking)

Preview changes before deployment

Scaling, locking and other common scenarios are easy to implement

Can work with any other configuration management tool

Can integrate third party scripts

Good integration (w/ IntelliSense) in VSCode

Different ways of doing IaC

Chef, Puppet, Ansible and others are configuration
management tools

• Used to configure infrastructure

• Mutable infrastructure

• Procedural deployment => configuration drift

• Require server to host configuration

ARM and Terraform are provisioning tools
• Used to create/manage/destroy infrastructure

• Immutable infrastructure

• Declarative deployment

• Creates a state file

Project structure

There’s not any required structure, but one was commonly established

All the infrastructure can be defined in a single “test.tf” file

|-- README.md
|-- main.tf
|-- variables.tf
|-- outputs.tf
|-- ...
|-- modules/
| |-- moduleA/
| | |-- README.md
| | |-- variables.tf
| | |-- main.tf
| | |-- outputs.tf
| |-- moduleB/
| |-- .../

main contains all the resources that will be deployed

variables defines all the input variables used to deploy components defined in main

outputs defined all the output variables created post-deployment

Modules are used to “organize” infrastructure code in components

Structure and content of each module depends on the context

Let’s start from the language

resource "azurerm_resource_group" "ASPItaliaRG" {
name = "myRG"
location = "West Europe"

}

resource "azurerm_storage_account" "storage" {
name = "myStorageAccount"
resource_group_name = azurerm_resource_group.ASPItaliaRG.location
account_tier = "Standard"

}

{
"$schema": "https://schema.management.azure.com/schemas/2015-

01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {

"storageAccountType": {
"type": "string",
"defaultValue": "Standard_GRS"

},
"storageAccountName": {

"type": "string",
"defaultValue": "myRG"

},
"location": {

"type": "string",
"defaultValue": "West Europe"

}
},
"resources": [

{
"type": "Microsoft.Storage/storageAccounts",
"apiVersion": "2019-06-01",
"name": "[parameters('storageAccountName')]",
"location": "[parameters('location')]",
"sku": {

"name": "[parameters('storageAccountType')]"
},
"kind": "StorageV2",
"properties": {

"supportsHttpsTrafficOnly": true
"accessTier": "Hot"

}
}

}

Terraform

ARM

Template validation

variable "notes" {
type = string
description = "Specifies some notes about the lock. Maximum of 512 characters"
default = null

validation {
condition = (var.notes != null ? length(var.notes) <= 512 : true)
error_message = "Notes maximum length is 512 characters."

}
}

Type-first language

Inline declarations +

Ternary statements

Functions

Variable declaration

null support

Development process

Everything is done via the CLI

https://www.terraform.io/downloads.html

https://www.terraform.io/downloads.html

terraform init

Initializes a working directory containing Terraform configuration files

The chosen backend is initialized using the given configuration settings

Searches the configuration for both direct and indirect references to providers
and attempts to install the plugins for those providers

provider "azurerm" {
version = "=2.41.0"
subscription_id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
skip_provider_registration = true
features {}

}

terraform validate & plan

Validate checks the configuration files in a directory
(syntactically valid and internally consistent), referring
only to the configuration and not accessing any remote
services such as remote state, provider APIs, etc.

Plan is used to create an execution plan. Terraform
determines what actions are necessary to achieve the
desired state specified in the configuration files

• It’s a convenient way to check whether the execution plan
for a set of changes matches expectations without making
any changes to real resources or to the state

terraform apply

Applies the changes required to reach the desired
state of the configuration, or the pre-determined
set of actions generated by a terraform plan
execution plan

Requires explicit approval (can be skipped in
CI/CD with --auto-approve)

Will NOT apply locking to the state file (locally),
unless specified with --lock=true

Will enable max supported parallelism to
complete the deployment as fast as possible, but
can be limited via --parallelism=n

Demo

Deploy resources with Terraform

What’s next?

Project Bicep!

Currently it’s an experimental language with the aim of
becoming the next generation of ARM Templates

Bicep is a transparent abstraction over ARM and ARM
templates

Bicep compiles down to standard ARM Template JSON
files, which means the ARM JSON is effectively being
treated as an Intermediate Language (IL)

It compiles, but also decompiling works

Solves many issue with linking related resources

Project Bicep

resource "azurerm_storage_account" "storage" {
name = "myStorageAccount"
resource_group_name = azurerm_resource_group.ASPItaliaRG.location
account_tier = "Standard"

}

resource storage 'Microsoft.Storage/storageAccounts@2019-06-01' = {
name : "myStorageAccount"
resource_group_name : ASPItaliaRG.location
sku : {
name: 'Standard'

}
}

Bicep

Terraform

{
"$schema": "https://schema.management.azure.com/schemas/2015-01-

01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": { ... },
"resources": [

{
"type": "Microsoft.Storage/storageAccounts",
"apiVersion": "2019-06-01",
"name": "[parameters('storageAccountName')]",
"location": "[parameters('location')]",
"sku": {

"name": "[parameters('storageAccountType')]"
},
"kind": "StorageV2",
"properties": {

"supportsHttpsTrafficOnly": true
"accessTier": "Hot"

}
}

}

bicep build

resource web 'Microsoft.Web/sites@2020-06-01' = {
name : "myWebSite"
properties : {

siteConfig: {
appSettings: [

{
name: 'PrimaryConnectionString'
value: '${storage.properties.primaryEndpoints.blob}'

}
]

}
}

}

Cross-reference resources

Slide e materiale su
https://aspit.co/ContainerDevOpsDay-21

@xtumiox
matteot@aspitalia.com

@morwalpiz
morgan.pizzini@icubed.it

