DevOps per le applicazioni
desktop

Matteo Pagani -
Windows App Consult Engineer @ Microsoft Container &

matteo.pagani@microsoft.com | @gmatteoq
DevOps Day

DDG aspitalia.com

DevOps for Windows desktop apps

Integration testing Staging
eﬂVirOﬂment environment
¢ ?
101010
0 I 0 I 0 I . .
Release
101010 O O
L/ . .
Continuous Deployment (CD) o o
Automated functional Pre-production
testing environment environment

« By combining continuous

integration and infrastructure as

code (laC), you'll achieve
identical deployments and the |

confidence to deploy to gi

production at any time.

|
Release

« With continuous deployment,
you can automate the entire
process from code commit to
production if your CI/CD tests
are successful.

Demo

The end-to-end workflow

Contalner &
DevOps Day

DevOps for Desktop Apps

Modern IT Virtuous Cycle

 Enable OS, Apps & IT to update independently

ey Beneits i ssiog oo
Never Regret Installing an a
of MSIX ———

* Predictable, safe, and reliable deployment
* Trusted, clean install & uninstall - no Win ROT

Simpler packaging and deployment

« Declarative install via Manifest file
« Identity, formal versioning and device targeting

« Disk space
? « Network optimization using differential updates

Packaging with MSIX

MSIX is the package format to deploy ANY Windows application
MEFC, Win32, UWP .NET Framework, .NET Core 3... or any other EXE

Publishing Anywhere
Managed: Store, Intune, SCCM
Unmanaged: Custom locations (Web, UNC)
with App Installer app and .appinstaller file

Support .NET Core / .NET 5 deployment modes

Self Contained, Framework Dependent

Create MSIX with Visual Studio

Create a new project

Recent project templates

Windows Application Packaging Project

(=] WPF App (.NET Core)
Manifest Editor

Azure Functions
Debugging @ Blazor App
Packages Wizard Console App (NET Core)

o] WPF App (MET Frarework)

MSBuild based
Customize build/package with MSBuild properties b &lEH ContosoEspenses

4 55 ContosoExpenses.Package
4 7 Applications
] ContosoExpenses

Available in the UWP Workload oD et

skg) Package.appxmanifest

Demo

Add MSIX packaging to a .NET application .
Container &

DevOps Day

MSIX Extensions for Azure DevOps

- It simplifies setting all the
parameters you need to s
generate the MSIX package as

nart of the pipeline

- Package not just Visual Studio SR

projects, but any binary

- Takes care of updating the
version number in the manifest

o A

Advanced Options for MSBuild v
Control Options v

Output Variables ~

Builds

Hosted Build Agent Private Build Agent

Include all VS features Access local resources (UNC shares)
Can be extended with new SDKs Speed up build times

Run automated tests Custom SDKs installed in advance
Clean images for each build Security with public PRs

* GitHub and Azure DevOps provide best-in class support for building Windows

apps
« Use windows-latest on Azure DevOps and GitHub

Demo

Configuring CI/CD :
Container &

DevOps Day

Release Pipelines

Releases deploy artifacts to environments
Client apps should be signed at release time
Promotion based on approval workflow

Releas
Triggered via push 5 minutes ago Status Total duration Artifacts
@ gmatteoq pushed - 092ae7b main In progress - -
Col
azure-static-web-apps-white-wave-0acbb4a03.yml
Artit on: push
1
L.:I‘:IJ
_Cc
& build 2m 44s & Deploy to staging envir... 1m 41z Deploy to production envir... 11z

-

reploying to production

Signing
CA issued certificates Self Signed certificates

Public CA's enable wide distribution Development/testing purposes only

Private CA's enable enterprise distribution Not for wide distribution

MSIX extensions

Task for Azure DevOps to sign
any kind of file, including
MSIX packages

Based on the signtool utility
Included in the Windows 10
SDK

Supports Secure Files, to help
you keeping the private
certificate safe

MSIX package signing ©
Task version 1% o
Display name *

Sign MSIX package

Package to sign ®

S(Build.ArtifactStagingDirectory\ ™™\ " . msix™

Certificate File* (1)

testcert.pfx

Password Variable *
secret

Time Stamp Server (i)

Control Options ~

Output Variables ~

Code signing on GitHub O

- Use a PowerShell script to encode the certificate in base64
- Store It as a secret, together with the password

- Download the certificate as part of the build and use it to sign the
nackage

- Delete the certificate at the end

The starter workflow on GitHub for .NET Core desktop apps uses this
approach: https://devblogs.microsoft.com/dotnet/continuous-

Integration-workflow-template-for-net-core-desktop-apps-with-
github-actions/

https://devblogs.microsoft.com/dotnet/continuous-integration-workflow-template-for-net-core-desktop-apps-with-github-actions/

Azure Key Vault

Azure Key Vault

V|
435")" @\'\\.
Y 4 N\
yid 0
| | |
}:2' %
i
;{ i
(v\'\\ f}%‘.
) &
¥ &
«® V 4
B y
) . k:ﬁ&/

Password for the
certificate

Certificate

Azure SignTool

https://github.com/
vcsjones/AzureSignTool/

Azure DevOps

J

GitHub

https://github.com/vcsjones/AzureSignTool/

Distribution

Store
Consumer apps
Store handles signing

Flights

Auto updates based on Store client

Non-Store

Non-Store Distribution (UNC and Web)
Requires trusted certificate

You are in control of update policy

Great for enterprises

Configuring automatic updates with the .appinstaller

<AppInstaller xmlns="http://schemas.microsoft.com/appx/appinstaller/2018"
Uri="{AppInstallerUri}"
Version="{Version}">
<MainBundle Name="{Name}"
Version="{Version}"
Publisher="{Publisher}"
Uri="{MainPackageUri}"/>
<UpdateSettings>
<OnLaunch HoursBetweenUpdateChecks="0"

ShowPrompt="true"

UpdateBlocksActivation="true" />
<AutomaticBackgroundTask/>
<ForceUpdateFromAnyVersion>true</ForceUpdateFromAnyVersion>

</UpdateSettings>
</AppInstaller>

ms-appinstaller:?source=https://../../app.appinstaller

Generating an .appinstaller file

<?xml version="1.0" encoding="utf-8"?>

) Automatlcally, as part Of <AppInstaller Uri="{AppInstallerUri}"
the Visual Studio build VegsiOf};;EVe;jiOE}" , ftcon/
xmlns= p://schemas.microsoft.com
through the App Installer appx/appinstaller/2018" >
template |
<MainBundle Name="{Name}"
- On Azure DevOps, you can version="{Version}"
. Publisher="{Publisher}"
generate one using the Uri="{MainPackageUri}"/>

MSIX Extensions

<UpdateSettings>
<OnLaunch HoursBetweenUpdateChecks="0"
ShowPrompt="true"
UpdateBlocksActivation="false" />
</UpdateSettings>

</AppInstaller>

Where to deploy?

= A

Azure Blob Storage Azure Static Web Apps
+ Static Websites (Preview)

GitHub only for
the moment

Where to deploy?

=

Azure Blob Storage
+ Static Websites

/A

Azure Static Web Apps
(Preview)

Network share

)

GitHub Pages

N
Generic hosting via
FTP

Demo

The deployment pipeline :
Container &

DevOps Day

@gmatteog
matteo.pagani@microsoft.com

. . Container &
Slide e materiale su
https.//aspit.co/ContainerDevOpsDay-21 DeVOpS Day

20 aspitalia.com
DO

