
Matteo Tumiati
Senior DevOps Engineer @icubedsrl, Technical Advisor @openloop
WinDev & ALM Microsoft MVP
matteot@aspitalia.com | @xtumiox

Serverless Computing: Taking
DevOps to the Next Level

mailto:daniele@aspitalia.com

Agenda

• Introduction to DevOps and deployment models

• Applying different rollout strategies

• Azure Functions

• Kubernetes

• GitOps

What is DevOps

“

”

DevOps is the union of people,
process, and products to enable
continuous delivery of value to
your end users.

Benefits of doing DevOps

Infrastructure as Code

Continuous Integration

Automated Testing

Continuous Deployment

Release Management

App Performance Monitoring

Testing & Auto

Scale

Availability monitoring

Change/configuration management

Automated environment
(de)provisioning

Self-service environments

Automated recovery

Feature toggle

Hypothesis driven development

Deployment strategies

It’s a way to handle version upgrades
• It doesn’t matter if we’re talking about production or not

• There is no reference to forward upgrades or rollbacks either

Updates should be done gracefully
• Users shouldn’t be impacted by any rollout

• Zero-downtime techniques…

Strategies are quite simple to be implemented
• The complicated part is related to the surroundings (database deployments, closing open

connections, read/write operations, geographically distributed apps, HA apps, business
critical apps…)

Recreate

Consists of shutting down version A then
deploying version B after version A is turned
off.

Pros
• Easy to setup

Cons
• High impact on users due to service

unavailability (during service A shutdown and B
startup)

Ramped

Slowly roll out a version of an application by
replacing instances one after the other until
all the instances are rolled out.

Pros
• Version is slowly released across instances

• Convenient for stateful applications that can
handle rebalancing of the data

Cons
• Rollout/rollback can take time

• Supporting multiple APIs is hard

• No real control over traffic

Blue/Green

Similar to ramped, but switch to newer version
is done once all services are available.

Pros
• Instant rollforward/rollback

• Avoid versioning issues (when done with IaC, PaC
and so on…)

Cons
• Assumes newer version already works

• Handling of stateful apps can be hard

Canary

Gradually shift network traffic from one version
to another. Mostly used to test rollout strategy
and verify everything works.

Pros
• Convenient error rate and perf monitoring

• Fast rollback

Cons
• Slower rollout (if you care)

A/B testing

Consists of routing a subset of users to a new
functionality under specific conditions. It is
usually a technique for making business
decisions based on statistics, rather than a
deployment strategy.

Pros
• Full control over the traffic distribution

Cons
• Several versions running in parallel in PROD

• Requires intelligent load balancer

• Hard to troubleshoot errors for a given session,
distributed tracing becomes mandatory

Shadow

Consists of releasing version B alongside
version A, fork version A’s incoming requests
and send them to version B as well without
impacting production traffic. Used to test
breaking changes.

Pros
• Perf testing with production loads

• No user impact

Cons
• Expensive (it requires -more than- double the

resources)

Azure App Service

Not really serverless… but ☺

Are an easy way to get started with:
• Hosting web applications in the cloud

• Understand deployment strategies

• Test rollback/rollforward options, disaster recovery and so on…

There is (also) a deployment model based on containers

Demo

Direct deployment (Recreate)
Introduction of staging slots (blue/green)
Advanced deployments with canary

What is an Azure Function

Focus on code, not architecture

Plug and play model to enhance
productivity, based on ready to use
connectors

Starting point towards a microservice
oriented architecture

Azure Function Triggers

HTTP and webhooks

Timer

Blob storage, Table storage

IoT Hub, Kafka, Queue Storage, RabbitMQ, Service Bus

Notification Hub, SignalR, Twilio

Event Grid, Event Hub

DAPR

Deployment models

“Classic direct” using the same way seen with App Services
→ easy to get started and works with any trigger, however, consider what could happen with
downtime…

When an HTTP request is in the queue, the message can be either routed to v1
or v2

→ can use direct, canary, blue/green and so on…

When a message is in a queue or coming from real-time events (storage,
SignalR, notifications…) then it could be parsed twice or, worst, introduce failures

→ dependent infrastructure should be duplicated and there should be a LB in front

→ downtime is not the most horrible enemy (unless critical)

For containers, same story is applied

Demo

Azure Function “classic” deployment
Azure Function deployment using containers

Kubernetes

Kubernetes (K8s) is an open-source orchestration system that can manage
(multiple) containers and services.

Initially developed by Google, now maintained by the CNCF (Cloud Native
Computer Foundation)

Standard for container orchestration

Guaranteed HA (if you know how to use it ☺)

Deployment models

Using plain deployment files (YAML)

Writing HELM charts (abstraction over deployment files)

Using kustomize/kompose (abstraction over Docker)

Via GitOps practices

Recreate

spec:
replicas: 3
strategy:
type: Recreate

$ kubectl apply -f app-v1.yaml

$ kubectl apply -f app-v2.yaml

A deployment defined with a

strategy of type Recreate will

terminate all the running

instances then recreate them

with the newer version.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#recreate-deployment

Ramped

A secondary ReplicaSet is created with the new version of the application, then
the number of replicas of the old version is decreased and the new version is
increased until the correct number of replicas is reached

spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:

of pods we can add at a time
maxSurge: 2
of pods unavailable during the update
maxUnavailable: 0

$ kubectl apply -f app-v1.yaml

$ kubectl apply -f app-v2.yaml

Blue/Green

The "green" version of the application is deployed
alongside the "blue" version. Once all versions are
deployed, then the LB is switched from v1.0.0 to v2.0.0

apiVersion: v1
kind: Service
metadata:
name: my-app
labels:
app: my-app

spec:
type: NodePort
ports:
- name: http
port: 8080
targetPort: 8080

selector:
app: my-app
version: v1.0.0

$ kubectl apply -f app-v1.yaml

$ kubectl apply -f app-v2.yaml

$ kubectl apply -f switch.yaml

Canary

Easy to be achieved, but not “built-in” in K8s. It’s similar to blue/green, but you
need to apply your math skills ☺ Works better in combination to a proxy (nginx,
HAProxy) or a service mesh

app-v1
spec:
replicas: 3

app-v2
spec:
replicas: 1

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: my-app-canary
labels:
app: my-app

annotations:
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-weight: "10"

A/B testing

Istio or any other service mesh is needed to provide this routing based on
custom conditions

route:
- tags:
version: v1.0.0
weight: 90

- tags:
version: v2.0.0
weight: 10

GitOps

A new operating model that does not
involve pipelines (directly)

Built on top of 4 principals:
1. The entire system described

declaratively

2. The canonical desired system state
versioned in Git

3. Approved changes that can be
automatically applied to the system

4. Software agents to ensure
correctness and alert on divergence

GitOps overview

Fleet by Rancher

It’s a way to manage GitOps at scale

Based entirely on Helm 3 charts

Uses a basic configuration that listen for changes in any repo

Built to manage lots of clusters, lots of deployments, or lots of teams in a single
organization

Can run in any Kubernetes cluster (The Fleet manager is a set of Kubernetes
controllers using standard Kubernetes APIs)

Three steps setup ☺

Install Helm and Fleet

brew install helm

helm -n fleet-system install --create-namespace --wait \
fleet-crd https://github.com/rancher/fleet/releases/download/v0.3.3/fleet-crd-0.3.3.tgz

helm -n fleet-system install --create-namespace --wait \
fleet https://github.com/rancher/fleet/releases/download/v0.3.3/fleet-0.3.3.tgz

Setup repository

cat > example.yaml << "EOF"
apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
name: sample
namespace: fleet-local

spec:
repo: "https://github.com/rancher/fleet-examples"
paths:
- simple

EOF

kubectl apply -f example.yaml

Track deployment status

Get Fleet status (to see pending deployments, rollouts and so on…)
kubectl -n fleet-local get fleet

Get deployment status for any specific service (pod, containers, services, ingresses…)
kubectl get deploy frontend

NAME READY UP-TO-DATE AVAILABLE AGE
frontend 3/3 3 3 116m

Recap

DevOps applied to rolling updates into production

Deployment strategies to provide zero downtime and business value

Container or serverless services deployments can be easy (only if managed
correctly and if all the implications are crystal clear)

GitOps at scale using Fleet by Rancher

Slide e materiale su
https://aspit.co/ServerlessDay

@xtumiox
matteot@aspitalia.com

