
Matteo Tumiati
Senior DevOps Engineer @icubedsrl
Microsoft MVP
matteot@aspitalia.com | @xtumiox

.NET 6 & GitHub

mailto:matteot@aspitalia.com

Agenda

Introduction to GitHub Actions

Apply the business needs

How .NET comes into play

GitHub Apps

GitHub Actions

GitHub Actions are a way used to automate tasks within software development
life cycle in GitHub

GitHub Actions are event-driven, meaning that workflows are executed once a
specified event has occurred

For example, every time someone creates a pull request for a repository, you can
automatically run a command that executes a software testing script

Very similar to what a pipeline is in Azure DevOps or in Jenkins, Octopus and so
on…

Dictionary

Actions are standalone commands that are combined into
steps to create a job. Actions are the smallest portable
building block of a workflow

A step is an individual task that can run commands in a job

A job is a set of steps that execute on the same runner

An event is a specific activity that triggers a workflow

The workflow is an automated procedure (written in YAML)
that you add to your repository within .github/workflows

A runner is a server that has the GitHub Actions runner
application installed and that can execute the workflow

Creating the first workflow

name: .NET
on:

push:
branches: [main]

pull_request:
branches: [main]

jobs:
build:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Setup .NET

uses: actions/setup-dotnet@v1
with:

dotnet-version: 6.0.x
- name: Restore dependencies

run: dotnet restore
- name: Build

run: dotnet build --no-restore

Event

Job

Step

Action

Runner

What if I cannot find what I need?

Suppose that:
• I need to deploy on my datacenter
• I must comply to a set of policies when executing steps
• I want to execute an action (for simplicity) but it doesn’t provide all the information I need

Customizations!
• It’s hard to personalize a world-wide multi-tenant tool…
• GitHub has some extensibility points, not only API based…

There are two main options:
• Use PowerShell, Bash, CMD or whatever to script your requirements
• .NET tools to the rescue!
• Create a custom GitHub Action!

Should I use scripts?

Pros

• You can write any code you need in
the way you need to comply to
requirements (i.e. PowerShell on
Windows, Bash on Linux)

• Can re-use existing code, if any

• There is plenty of documentation
available for any command

Cons

• Parameters must be validated at
runtime (no compile-time checking)

• May be hard to get started if you are
not skilled enough

• Can be tricky if the same script has to
run against different OS

.NET tools

.NET tools

A .NET tool is a special NuGet package that contains an entire console
application written in .NET

Why a .NET tool?
• Fits perfectly in between the scripts and task extensions

• You can choose your own language that is part of the .NET family

• No UI and no complexity in getting started

• Tasks can work on any OS given .NET 6 is cross-platform (since .NET Core)

• Takes advantage of CI/CD system for ALM and versioning as it’s a “classic” console app

• Azure DevOps? Yes. GitHub? Yes. What about Jenkins? YES!

How to get started?

On the authoring side:
1. Write a console app

2. Extend it to be a .NET tool

3. Distribute it on NuGet (or similar)

On the consumer side:
1. Use dotnet search or ToolGet to search for packages (optional)

2. Install the tool using dotnet tool install -g {{ package-name }}

3. Invoke the tool using {{ package-name }} like a “classic” script

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-tool-search
https://www.toolget.net/

Use the task

Install the .NET tool
- script: dotnet tool install --tool-path tools Hello --version 1.0.0
displayName: 'Install tool'
env:

DOTNET_SKIP_FIRST_TIME_EXPERIENCE: true
DOTNET_CLI_TELEMETRY_OPTOUT: true

When the tool is installed, then we can use it
- pwsh: ./tools/hello-world-aspitalia ${{ parameters.speaker }}
displayName: 'Print hello'

Install the .NET tool
- name: Install tool
run: dotnet tool install --tool-path tools Hello --version 1.0.0

When the tool is installed, then we can use it
- name: Print hello
run: ./tools/hello-world-aspitalia $speaker
env:
SPEAKER: "Matteo"

Azure DevOps

GitHub

Creating the action

Customizing actions

It’s not really “custom”, as you can see from the Marketplace or from any action
you may be already using

It’s a way to create your own set of instructions to be executed in a different way
compared to scripting

You can create an entire lifecycle management for your actions, that is
particularly useful when complexity starts raising up

Learning curve is quite flat given what you need to get started is just a repo in
GitHub (and an account)

Think ahead about releasing an action

Especially needed when thinking of releasing publicly, because you want to
control releases and avoid creating breaking changes for your customers

Use a README.md to explain how the action works

Consider applying a standard branching strategy (i.e. main as default branch,
then conventional commits…)

Consider applying a standard versioning strategy (i.e. SemVer)

steps:
- uses: actions/javascript-action@v1.0.0

Best practices for release management

Publish Action on GitHub marketplace
Learn more

mailto:actions/javascript-action@v1.0.0
https://docs.github.com/en/actions/creating-actions/about-custom-actions#good-practices-for-release-management
https://docs.github.com/en/actions/creating-actions/publishing-actions-in-github-marketplace

Types of action

Several types of actions that can be used depending on knowledge,
customization needed, requirements on runners…

Independently from the type, we need to setup an action.yml (or .yaml) that
defines the entry point of the custom action, structure, input and output
parameters and so on…

Type Can execute on Self-hosted support Notes

Docker container Linux ✔

JavaScript Linux, macOS,

Windows

✔

Composite Actions Linux, macOS,

Windows

✔ Can combine multiple

workflows in one

JavaScript

To ensure your JavaScript actions are compatible with runners operating systems,
the JavaScript code you write should be pure JavaScript

JavaScript actions can run directly on a runner machine and can use binaries that
already exist in the virtual environment

Separate action code from the environment used to run the code

If you're developing a Node.js project, the GitHub Actions Toolkit provides
packages that you can use in your project to speed up development

Fastest and most flexible option

https://github.com/actions/toolkit

Docker containers

More consistent and reliable unit of work because the consumer of the action
does not need to worry about the tools or dependencies (as these are already
packaged in the Docker container)

Docker based actions can only execute on runners with a Linux operating system

Because of the latency to build and retrieve the container, Docker container
actions are slower than JavaScript actions

Dockerfile

Container image that runs your code
FROM alpine:3.10

Copies your code file from your action repository to the filesystem
path `/` of the container
COPY entrypoint.sh /entrypoint.sh

Code file to execute when the docker container starts up
(`entrypoint.sh`)
ENTRYPOINT ["/entrypoint.sh"]

Dockerfile reference | Docker DocumentationLearn more

https://docs.docker.com/engine/reference/builder/

entrypoint.sh

#!/bin/sh -l

echo "Hello $1"
time=$(date)
echo "::set-output name=time::$time"

action.yml

Metadata syntax for GitHub Actions - GitHub Docs

name: 'Hello World'
description: 'Greet someone and record the time'
inputs:
who-to-greet: # id of input
description: 'Who to greet'
required: true
default: 'World'

outputs:
time: # id of output
description: 'The time we greeted you'

runs:
using: 'docker'
image: 'Dockerfile'
args:
- ${{ inputs.who-to-greet }}

Learn more

https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions

Action and outputs

on: [push]

jobs:
hello_world_job:

runs-on: ubuntu-latest
name: A job to say hello
steps:

To use this repository's private action,
you must check out the repository
- name: Checkout

uses: actions/checkout@v2
- name: Hello world action step

uses: ./ # Uses an action in the root directory
id: hello
with:

who-to-greet: 'Mona the Octocat'
Use the output from the `hello` step
- name: Get the output time

run: echo "The time was ${{ steps.hello.outputs.time }}"

Injected at runtime!

Limits

Some Docker instructions interact with GitHub Actions, and an action's metadata
file can override some Docker instructions

Docker actions must run with the default Docker user (root). Do not use the USER
instruction in your Dockerfile, because you won't be able to access the
GITHUB_WORKSPACE

It's recommended to use Docker images based on the Debian operating system

GitHub sets the working directory path in the GITHUB_WORKSPACE environment
variable so it's recommended to not use the WORKDIR instruction in Dockerfile

Entrypoint in action’s metadata file overrides ENTRYPOINT defined in Dockerfile

Args in action’s metadata file overrides CMD defined in Dockerfile

Dockerfile support for GitHub ActionsLearn more

https://docs.github.com/en/actions/creating-actions/dockerfile-support-for-github-actions

Run images from external registries

runs:
using: 'docker'
image: 'Dockerfile'

runs:
using: 'docker'
image: 'docker://debian:stretch-slim'

What about .NET 6? ☺

Well… it’s Docker, isn’t it? ☺

.NET SDK by Microsoft | Docker HubLearn more

https://hub.docker.com/_/microsoft-dotnet-sdk

Benefits

Code reuse (when I have a pre-existing console app written in .NET)

Knowledge, if my team already works with .NET and/or is familiar with Docker
containers

Can reuse all the native commands from GitHub to integrate with console
outputs, enumerate error messages, stop a workflow, write error messages

Learn more Workflow commands for GitHub Actions - GitHub Docs

https://docs.github.com/en/actions/learn-github-actions/workflow-commands-for-github-actions

Demo

C# Code Analyzer

GitHub Apps

It can be any application that reacts
to some events occurring in GitHub,
so it’s can be an extension of an
action

It can be either Node-based or also
Blazor/ASP.NET 6 or any other tech
stack as long as it can receive any
request coming as webhook

> POST /payload HTTP/2

> Host: localhost:4567
> X-GitHub-Delivery: 72d3162e-cc78-11e3-81ab-4c9367dc0958
> X-Hub-Signature: sha1=7d38cdd689735b008b3c702edd92eea23791c5f6
> X-Hub-Signature-256: sha256=d57c68ca6f92289e6987922ff26938930f6e3c
> User-Agent: GitHub-Hookshot/044aadd
> Content-Type: application/json
> Content-Length: 6615
> X-GitHub-Event: issues

> {
> "action": "opened",
> "issue": {
> "url": "https://api.github.com/repos/octocat/Hello-
World/issues/1347",
> "number": 1347,
> ...
> },
> "repository" : {
> "id": 1296269,
> "full_name": "octocat/Hello-World",
> "owner": {
> "login": "octocat",
> "id": 1,
> ...
> },
> ...
> },
> "sender": {
> "login": "octocat",
> "id": 1,
> ...
> }
> }

GitHub Actions vs GitHub Apps

Actions
• Provide automation that can perform continuous

integration and continuous deployment.

• Can run directly on runner machines or in Docker
containers.

• Can include access to a clone of your repository,
enabling deployment and publishing tools, code
formatters, and command line tools to access
your code.

• Don't require you to deploy code or serve an
app.

• Have a simple interface to create and use secrets,
which enables actions to interact with third-party
services without needing to store the credentials
of the person using the action.

Apps
• Run persistently and can react to events quickly.

• Work great when persistent data is needed.

• Work best with API requests that aren't time
consuming.

• Run on a server or compute infrastructure that
you provide.

Summary

Different ways to execute GitHub Actions

Different ways and complexities involved when running either scripts, .NET tools
or creating custom actions

Everything depends on time and on the business needs, as always ☺

Demo available in GitHub

https://github.com/matteotumiati/dotnet-conference-2021

Slide e materiale su
https://aspit.co/netconfit-21

@xtumiox
matteot@aspitalia.com

https://aspit.co/netconfit-21

