
Matteo Tumiati
Solution Architect / DevOps / @iCubedsrl
matteot@icubed.it | @xtumiox

GitHub .NET

mailto:matteot@icubed.it

Who are we

Small team of 3 consultants, 2 interns

No Kubernetes experts

Working across 8 teams to deliver a platform

• 200+ microservices

• 100+ developers

Focus mostly in developing automation to support the delivery of the product, self-service tools
and dashboards to monitor KPI/usage/automation

GitOps

How it works with “standard” setup

Commit or
PR merge

Build
Linting

L0/L1/L2 tests
Reporting

Code Analysis

CI pipeline

Download artifacts
Run integration tests

Retrieve secrets/connection
strings

Release process

CD pipeline

dev

QA

production

Security? Who dis?

Known issues

• Direct access to secrets, configuration and
production environments via pipelines

• Manual intervention when approvals are
required

• Hard to maintain the pipeline when it needs to
scale to multiple environments

Less obvious issues ☺

• If I get access to the service connection/service
principal associated with the pipeline, I can do
whatever I want even without permissions!

• Hard or impossible to detect deviations from
the original deployment

• Each pipeline has costs (literally money)
involved when it runs

• Number of repos ≈ Number of pipelines

• How do you manage customizations and token
manipulation (a.k.a. regex) when dealing with
100+ environments? ☺

• What if the application is distributed in multiple
clusters world-wide?

There are also pros, but let’s discuss about the bad things only here ☺

Introduction to GitOps

The entire system is described in a declarative way: infrastructure as code, installation scripts,
deployment files, application source code… everything is part of a repository, so that it can be
easily reconstructed in case of DR scenarios

The desired state is defined by git: easier to rollback (simply run “git revert”) or to move forward
(git push)

All the changes could be applied at the same time and everywhere, without requiring access to
any environment, without CD pipelines, to increase security and separation of concerns

We must have an agent that checks for changes and detect deviations with respect of the desired
state

GitOps architecture

Submit code changes Review changes Microservice Repo

CI pipeline Application/Configuration Repo

Container Registry

Continuous Sync
Operator

Checks for changes

Apply desired
changes

Continuous Sync
Operator

Apply desired
changes

How to reach the goal

Create a
Dockerfile

1

Create an
Helm chart

2

Deploy the
infrastructure

3

Setup the
operator

4

Perform the
first
installation

5

Choose the right tool for GitOps

CLI-first approach

Experimental UI

Support for RBAC

Supports Helm and Kustomize

Both CLI and WebUI

Supports RBAC+SSO

Supports multi-tenancy

Works with Helm, Kustomize and more

No support for really high scale environments!

Welcome to Fleet

Fleet is a container management and
deployment engine designed to offer users more
control on the local cluster and constant
monitoring through GitOps

Can scale up to 1mln clusters

Main focus on Helm Charts, but supports plain
Kubernetes and Kustomize

Architecture

Fleet Manager: The centralized component that
orchestrates the deployments of Kubernetes assets
from git

Fleet controller: The controller(s) running on the
Fleet manager orchestrating GitOps.

Fleet agent: Every managed downstream cluster will
run an agent that communicates back to the Fleet
manager.

GitRepo: Git repositories that are watched by Fleet
are represented by the type GitRepo.

How to install

Perform an initial deployment

Ok, but what now?

We are still missing a WebUI

How do I know which clusters have the agent installed?

Hard to keep track of a million clusters?

How do I manage the deployment on multiple clusters?

What if I want to apply customizations?

Welcome to Rancher!

Managed Kubernetes Cluster Operations across
on-prem or cloud clusters

Enterprise-grade security features and
integrations

Provides a rich catalog of services for building,
deploying and scaling apps

Open source in GitHub

Best choice after RedHat-IBM according to
Forrester

Runs on top of Kubernetes ☺

Setup process

Step 1
Create and connect to the cluster hosting Rancher

Step 2
Install the ingress controller so we can reach the
Rancher management UI once done

Setup process

Step 3
Configure cert-manager

Setup process

Step 4
Install Rancher using Let’s Encrypt

Demo

Introduction to GitOps

Fleet deployment units

When a GitRepo is scanned it will produce one or more bundles

Bundles are a collection of resources that get deployed to a cluster

Bundle is the fundamental deployment unit used in Fleet

In a context of a microservices-based architectures, we can assume (even if not mandatory) to
have a bundle for each microservice

Bundles are described into Fleet.yaml files

Fleet.yaml files are “mandatory” as the repos are growing, given there’s a hard limit of 1Mb of
content (gzipped)

Can be the only thing available in the Application/Configuration Repo that the operator will scan
or, can be used to combine Helm with Kubernetes YAML files and Kustomize

Secure everything with
DevSecOps

DevSecOps

DevOps isn’t just about development and operations teams. If you want to take full advantage of
the agility and responsiveness of a DevOps approach, security must also play an integrated role
in the full life cycle of your apps.

It means thinking about application and infrastructure security from the start and automating
some security gates to keep the DevOps workflow from slowing down

Better having false positives than missing a vulnerability that could put the entire organization at
risk

It’s all about security, from data isolation to infrastructure security, software and infrastructure
patches, network security, unit tests dedicated to security features, service and configuration
management…

DevSecOps

Plan & Develop Commit changes Build and test Release in
production

Operations

Threat modelling
IDE Security plugins
Pre-commit hooks
Secure coding standards
Peer reviews

Static app security
testing (SAST)
Security unit and
functional tests
Dependency
management
Secure pipelines

Dynamic app security
testing (DAST)
Cloud configuration
validation
Infrastructure scanning
Security acceptance
testing

Security smoke tests
Configuration checks
Live site penetration testing

Continuous monitoring
Threat intelligence
Penetration testing
Blameless postmortems

C
o

st
s

Time

Focus for today ☺

Docker images

Microservices and
dependency
management

Configuration files for
Kubernetes

Infrastructure

Ti
m

e
 t

o
 s

ca
n

C
o

m
p

le
xi

ty
High

Low

Infrastructure scanning

Terraform is not secure! ☺

TFSEC checks for misconfigurations across all major cloud
providers with hundreds of built-in rules

Evaluates HCL expressions, relationships between resources,
literal values and functions (even in modules)

Supports multiple output formats, including JUnit for CI/CD
pipelines

Plug-ins available for almost any IDE (including VSCode)

Open source

Demo

Scanning with TFSec

Kubernetes misconfigurations

Block any code misconfiguration, regardless of Kubernetes
YAML files, Kustomize or Helm

Define custom rules and policies

Policy enforcement, locally, in CI/CD AND in a production
environment

Easily integration with GitHub, GitLab and more

Pricing

Free with unlimited checks to get started

Free for individuals who has max 4 nodes

Admission controller, SAML/SSO, priority support and other
enterprise features, depends on # of nodes

Demo

Scanning with Datree

Dependency management

Why should I care?
• Private records of 147.9 million Americans along with 15.2 million British citizens and about

19k Canadian citizens were compromised in the Equifax data breach in 2017 at the American
credit bureau Equifax, making it one of the largest cybercrimes related to identity theft. In a
settlement with the United States Federal Trade Commission, Equifax offered affected users
settlement funds and free credit monitoring.

Is there a way to automatically update dependencies so the development team
can focus on something else?

• Yes, but the dev team should ALWAYS be involved into the process!

Introducing Dependabot

There are even more like
compose, terraform, pip,
yarn…

It works with GitHub out
of the box, but it is rather
easy to configure with any
CI/CD system

Learn more at
https://docs.github.com/en/code-
security/dependabot/

https://docs.github.com/en/code-security/dependabot/

How does it work? ☺

Nobody will know that you have always the latest
version of everything and that your code is more
secure, effortlessly ☺

Container image scanning

Trivy is a comprehensive security and vulnerability scanning tool

Targets container images, but also FS, git repos and K8s clusters

Can perform different scans to detect:

• OS packages and software dependencies in use (SBOM)

• Known vulnerabilities (CVEs)

• IaC misconfigurations

• Sensitive information and secrets

Could replace TFSec and (part of) Datree, if you know how to use REGO and are willing to pay a
lot more ☺

There is also a GitOps scanner, but only works with Argo and Flux… but ☺

Scanning a GitRepo using Fleet

It’s an experimental feature that must
be enabled at your own risk!

Allow users to scan an image and write
back the image changes to git
repository

There aren’t really many details on the
engine used

Demo

Scan with Trivy

Trivy is an all-in-one tool

Slide e materiale su
https://aspit.co/netconfit-22

@xtumiox
matteot@icubed.it

https://aspit.co/netconfit-22
mailto:matteot@icubed.it

	Slide 1: GitHub .NET
	Slide 2: Who are we
	Slide 3: GitOps
	Slide 4: How it works with “standard” setup
	Slide 5: Security? Who dis?
	Slide 6: Introduction to GitOps
	Slide 7: GitOps architecture
	Slide 8: How to reach the goal
	Slide 9: Choose the right tool for GitOps
	Slide 10: Welcome to Fleet
	Slide 11: Architecture
	Slide 12: How to install
	Slide 13: Perform an initial deployment
	Slide 14: Ok, but what now?
	Slide 15: Welcome to Rancher!
	Slide 16: Setup process
	Slide 17: Setup process
	Slide 18: Setup process
	Slide 19: Introduction to GitOps
	Slide 20: Fleet deployment units
	Slide 21: Secure everything with DevSecOps
	Slide 22: DevSecOps
	Slide 23: DevSecOps
	Slide 24: Focus for today 
	Slide 25: Infrastructure scanning
	Slide 26: Scanning with TFSec
	Slide 27: Kubernetes misconfigurations
	Slide 28: Scanning with Datree
	Slide 29: Dependency management
	Slide 30: Introducing Dependabot
	Slide 31: How does it work? 
	Slide 32: Container image scanning
	Slide 33: Scanning a GitRepo using Fleet
	Slide 34: Scan with Trivy
	Slide 35: Trivy is an all-in-one tool
	Slide 36

